
e-vota

Alice, Melusi, (& Jeff)

MISG 2016 student workshop

Abstract. The purpose of this project has been to consider desirable
properties of a distributed ‘electronic voting system’ and to provide a
high-level design ensuring them. Learning objectives have been: (a) how
to express non-functional requirements (b) how to describe a distributed
system (c) how to reason about distributed behaviour.

1 Introduction

Assumptions:
(a) The electoral roll(voters register) is up-to-date implying that no addition of
new voter or deletion of an existing voter.

2 Requirements

(a) Voter Authentication
(b) Confidentiality
(c) Accountability
(d) No double voting

3 The class e-vota

A system is viewed as a class (aka object, abstract data type, module, . . . ):
having states, initial states and operations (which may take input, update state
and give output). The class is described using the Z notation.

The Z class has these generic types:
(i) Strings, of voters
(ii) Info, of voters’ info (Demographic, geographic, . . . )
(iii) Candidates, of candidates (Candidates 6= ∅)
(iv)Time, of the voting period
(v) Deadline ∈ Time
(vi) vp (voting protocol) is the method that computes the rankings from the
votes cast by voters that is

vp : multiset−range(votescast) 7→ rankings



3.1 System state

The state of the system contains the set of voters and the votes cast so far.

State
voters : PStrings
votescast : voters 7→ Rankings(Candidates)

voters 6= ∅

3.2 Initially

sets Initially no votes have been cast.

Init
State

votescast = ∅

The set of voters remains unchanged throughout the operations.

3.3 System operations

This operation checks for the validity of both the voter and the vote at one go.

ValidateVoter&Vote
ΞState
voterid?, voterid ! : String
vote?, vote! : SeqCandidates
valid ! : B

valid ! = (voterid? ∈ voters) ∧ (vote? ∈ Rankings(Candidates))
voterid ! = voterid?
vote! = vote?

Depending on the result from the above operation, the vote can either be
counted or not.

AddVote
∆State
valid? : B
vote? : SeqCandidates
voterid? : String
votermsg ! : B

valid?⇒ votescast ′ = votescast ⊕ {(voterid?, vote?)}?
¬valid?⇒ votescast ′ = votescast
votermsg ! = valid?

2



The operation of casting a vote is now described in terms of those two smaller
operations, using ‘piping’. This is simply a specification method, and does not
imply that the implementation needs to reflect the two operations individually.

CastVote := ValidateVoter&Vote >> AddVote.

The precondition for CastVote holds: it is a total operation.

Announce
ΞState
t : Time
result ! = Rankings(Candidates)

t = Deadline
result ! = vp(multiset−range(votescast))

The precondition for Announce is t = Deadline.

4 Properties

Establishing the properties.

4.1 No double voting

4.2 Voting Module

System design involves a number of levels from high to lower levels of abstrac-
tion. For the voting system, splitting the atomic vote into several operations and
actions raises concerns. We show how such concerns can be addressed.
For a set A of voters and each a : A, let
ka be a’s public key, ka be a’s private key.
Then ka • ka = ka • ka = identity.
(Also ka • kb = kb • ka).

4.3 Digital Signature

The voter encrypts his/her vote with kid (which no one else is able to do, because
kid is private). The system then authenticates id’s vote by applying kid .
Assumption: for u 6= id . ku • kid 6∈ Rankings(Candidates).
A hacker might do ku • kid • kid and claim id’s vote as his own. but that’s
another problem.
This technique ensures voter accountability (given the assumptions of Public
Key Encryption).

3



5 Conclusion

References

1. L. Fouard, M.Duclos and P. Lafourcade. Survey on electronic voting systems. ??,
?:?–??, 20??.

4


